Комплект залач поличныем методической компессиой по физико при центральном организателе Representant сомышил школьников Рамфоны (495) 4/5-4/17, 6(496)/144-66-4/3 E-mail physodympolymail.com

Авторы задач

9 класс	10 класс	11 класс
1. Bogoósés II.	1. Чивилёв В.	1. Козел С.
2. Шеронов А.	2. Ilpyr 9.	2. Козел С.
3. Козел С.	3. Апполонский А.	3. Кармазин С.
4. Замятнин М.	4. Проскурив М.	4. Проскурин М.
5. Варламов С.	5. Козел С.	5. Козел С.

Общая редакция — Козел С., Слободянин В.

Оформление и вёрстка — Старков Г., Алексеев В., Казеев Н., Кузнецов И.

При подготовке оригинал-макета использовалась издательская система IMFX 2 є.

© Авторский коллектив
Подписано в печать 15 апреля 2011 г. в 13:14.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

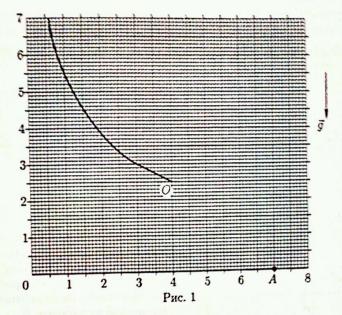
Закаючительный этап. Теоретический тур

9 класс

Задача 1. Спуск по желобу

Небольшое тело отпустили без начальной скорости в некоторой точке M гладкого изогнутого желоба. Оторвавшись от желоба в точке O, оно упало на пол в точке A (рис. 1). С помощью построений и расчётов, покажите на рисунке положение точки M желоба, в которой тело было отпущено. Каково расстояние (в условных единицах) от пола до точки M?

Масштабы по осям рисунка даны в некоторых условных единицах.



Задача 2. Шайба и горка

Небольшая шайба, скользящая по гладкой горизонтальной поверхности, наезжает на гладкую горку, покоящуюся на той же поверхности (рис. 2). После того, как шайба соскользнула с горки, оказалось, что шайба и горка движутся по гладкой горизонтальной поверхности с одинаковыми по модулю скоростями.

- 1. Определите, при каком соотношении масс шайбы и горки это возможно.
- Найдите отношение максимальной потенциальной энергии, которая была у шайбы во время подъёма на горку, к начальной кинетической энергии шайбы.

Примечание. Во время подъёма и спуска шайба не отрывается от горки.

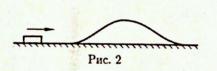
Задача 3. Циклический теплообмен

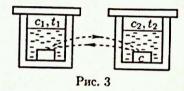
Имеется два теплоизолированных сосуда с водой. Теплоёмкость всей массы воды в первом сосуде c_1 , её температура t_1 . Теплоёмкость и температура воды во втором сосуде равны соответственно с2 и t2. Во втором сосуде кроме воды находится брусок, тенлоёмкость которого равна с (рис. 3).

Брусок вынимают из второго сосуда и погружают в первый сосуд. После установления теплового равновесия брусок возвращают во второй сосуд.

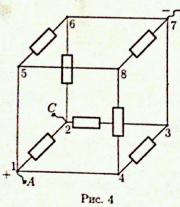
Соотношение между теплоёмкостями: с1: с2: с = 4:5:1. Пренебрегая теплообменом с окружающими телами, определите:

- 1. Какое минимальное количество п таких циклов нужно сделать, чтобы разность температур $(t_2-t_1)_n$ уменьшилась не менее, чем в N=25 раз?
- 2. Какая температура воды установится в сосудах после очень большого числа пиклов?





Задача 4. Проволочный куб



- В семь рёбер проволочного куба впаяны одинаковые резисторы с сопротивлением R (рис. 4). Сопротивление проводников в остальных рёбрах пренебрежимо малы. Между клеммами А и В приложено напряжение U.
- 1. Найдите силу тока I_{AB} и сопротивление куба R_{AB} между клеммами Aи В.
- 2. Определите, в каком из рёбер куба сила тока максимальна и чему она равна.
- 3. Укажите, в каких резисторах выделяется максимальная тепловая мощ-

ность и чему она равна.

4. Пусть теперь напряжение U приложено между клеммами A и C. Определите силу тока I_{AC} и сопротивление R_{AC} .

Задача 5. Составной цилиндр

Цилиндр составлен из двух сочленённых отрезков труб и закреплён так, что его ось симметрии — вертикальна. Снизу к цилиндру прижата заслонка, которая полностью закрывает первую трубу. Чтобы удерживать заслонку в прижатом состоянии, к ней снизу нужно прикладывать силу $F\geqslant F_0$. После того, как в цилиндр налили V_0 литров воды, минимальная сила, необходимая пля удержания заслонки в прижатом состоянии, возросла в два раза. Когда в пилиндр налили ещё V_0 литров воды, минимальная сила возросла ещё в два раза. Наконец, когда в цилиндр добавили $V_0/3$ литров воды, минимальная сила возросла ещё на F_0 , а цилиндр оказался полностью заполнен.

- 1. Вычислите отношение $S_1: S_2$ площадей нижней и верхней труб.
- 2. Вычислите отношение $L_1: L_2$ длин нижней и верхней труб.

0'

10

Рис. 5

10 класс

Задача 1. Шарик в сосуде с водой

Деревянный и металлический шарики связаны нитью и прикреплены одной нитью ко дну сосуда с водой. Сосуд вращается с постоянной угловой скоростью вокруг вертикальной оси ОО' (рис. 5).

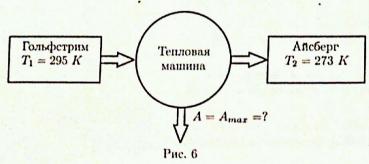
В результате шарики, оставаясь полностью в воде, расположились так, как показано на рисунке. Деревянный шарик (1) находится от оси вращения на расстоянии втрое меньшем, чем металлический (2). Верхняя нить составляет угол α ($\sin \alpha = 4/5$) с вертикалью. Угол между нитями равен 90°. Размеры шариков малы по сравнению с их расстояниями до оси вращения.

- 3. Под каким углом к вертикали направлена сила Архимеда, действующая на деревянный шарик? Дайте объяснение.
- 4. Найдите отношение сил натяжения верхней и нижней нитей.

Задача 2. Тепловая машина

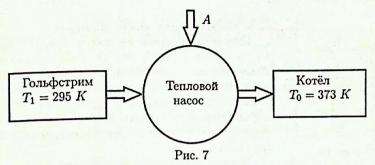
Гигантский айсберг массой $m=9\cdot10^8$ кг (куб $100\times100\times100$ м³), имеющий температуру $T_2=273$ К, дрейфует в течении Гольфстрим, температура воды которого $T_1=295$ К.

1. Пренебрегая прямым теплообменом между айсбергом и теплой водой, найдите максимальную работу тепловой машины, использующей Гольфстрим в качестве нагревателя и айсберг в качестве холодильника, за то время, пока весь айсберг не растает (рис. 6).



2. Определите, сколько воды можно испарить в котле за счёт работы, количество которой найдено в первом пункте, если использовать её в тепловом

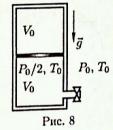
насосе для "перекачки" тепловой энергии из течения Гольфстрим в котёл с температурой $T_0=373~{\rm K}$ (рис. 7).



Теплота плавления льда $q=3,35\cdot 10^5$ Дж/кг, теплота испарения воды $\lambda=2.26\cdot 10^6$ Дж/кг.

Задача 3. Адиабатический процесс

В цилиндрическом сосуде объёма $2V_0$ под тяжёлым поршнем находится одноатомный идеальный газ при температуре T_0 и давлении $P_0/2$, занимающий объём V_0 (рис. 8). Над поршнем вакуум. Внизу в сосуде имеется небольшое отверстие перекрытое краном. Снаружи пространство заполнено тем же газом при давлении P_0 , температуре T_0 . Сосуд теплоизолирован.



Кран приоткрывают так, что поршень медленно поднимается вверх, и после того, как давление внутри и Рис. 8 снаружи выравнивается, кран закрывают. Определите температуру газа после закрытия крана.

Задача 4. Слоистый диэлектрик

Плоский конденсатор с расстоянием между обкладками d подсоединён к источнику постоянного тока с ЭДС, равной \mathcal{E} (рис. 9).

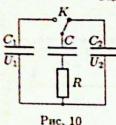
Конденсатор заполнен двумя слоями слабо- d/2 проводящих сред с разными значениями проводимости λ_1 и λ_2 . Оба слоя находятся в электрическом контакте между собой и с идастивами конденсатора. Толщина каждого сле

в электрическом контакте между сооби и с пластинами конденсатора. Толщина каждого слоя d/2, диэлектрическая проницаемость обоих слоёв $\varepsilon_1=\varepsilon_2=1$. Найдите:

- 1. Поверхностные илотности σ_1 и σ_2 зарядов на иластинах конденсатора,
- 2. Поверхностную плотность σ заряда в плоскости контакта слоёв.

Примечаные: Уделныная проводимость — это, величина, обратная удельному сопротивлению: $\lambda = 1/\rho$.

Задача 5. Перезарядка конденсаторов



Имеются два заряженных конденсатора с ёмкостями $C_1 = 18 \text{ мк}\Phi \text{ и } C_2 = 19 \text{ мк}\Phi$. Напряжения на конденсаторах равны соответственно $U_1 = 76 \text{ B}$ и $U_2 =$ = 190 В. Третий конденсатор с неизвестной ёмкостью C подсоединён к конденсатору C_2 (рис. 10). Ключ Kперекидывают из правого положения в левое, а после перезарядки конденсаторов возвращают в исхолное положение.

Известно, что после выполнения 44 таких циклов разность напряжений $(U_2-U_1)_{44}$ составила 1% от первоначальной $(U_2-U_1)_{04}$

- 1. Чему равна ёмкость конденсатора С?
- 2. Какое напряжение U_{∞} утсановится на конденсаторах после большого числа шиклов?
- 3. Какая тепловая энергия выделится на резисторе R после большого числа инклов?

11 класс

Задача 1. Трифилярный маятник

Массивное кольцо подвешено на трёх тонких вертикальных нитях длиной L (рис. 11).

- 1. Определите период малых крутильных колебаний кольца относительно оси ОО'.
- 2. Насколько изменится период крутильных колебаний, если в центре кольца (точка О) при помощи лёгких спиц расположить тело малых размеров (материальную точку), масса которого равна массе кольца?

Рис. 11

Указание: При $\alpha \ll 1$ можно использовать приближённое выражение

$$\cos \alpha \approx 1 - \alpha^2/2$$
.

Задача 2. Заряженная частица в соленоиде

На рисунке 12 изображено сечение длинной прямой катушки (соленоида), радиус витков которой r=10 см. Число витков катушки на 1 метр длины $n = 500 \,\mathrm{m}^{-1}$. По виткам катушки протекает постоянный ток I == 0.1 A (по часовой стрелке).

Через зазор между витками в точке А в катушку влетает заряженная частица, ускоренная разностью потенциалов $U = 10^3 \,\mathrm{B}$. Скорость частицы в точке А направлена вдоль радиуса соленоида. Частица движется внутри соленоида в плоскости, перпендикулярной его оси, и вылетает из соленоида в точке C,

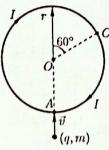


Рис. 12

расположенной под углом $\alpha = 60^{\circ}$ к первопачальному направлению. Определите:

- 1. знак заряда частицы;
- 2. радиус кривизны траектории частицы внутри соленоида;
- 3. удельный заряд частицы (то есть отношение модуля заряда частицы к

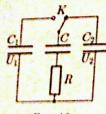
Магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7}$ (единиц СИ).

Задача 3. Устойчивость поршия

Закрытый снизу тонкостенный цилиндр длиной L=1,50 м установлен вертикально. В верхней части он соединён с другим цилиндром, значительно большего диаметра (рис. 13). В нижнем цилиндре на расстоянии $h_1 \approx 380$ мм от верхнего края расположен тонкий лёгкий поршень. Над поршнем находится слой ртути высотой $h+\Delta h$, где $\Delta h\ll h$, ниже пориня — гелий под давлением

Примечание: Уделиьная проводимость — это, величина, обратная удельному сопротивлению: $\lambda = 1/\rho$.

Задача 5. Перезарядка конденсаторов



Имеются два заряженных конденсатора с ёмкостями $C_1 = 18$ мкФ и $C_2 = 19$ мкФ. Напряжения на конденсаторах равны соответственно $U_1 = 76$ В и $U_2 = 190$ В. Третий конденсатор с неизвестной ёмкостью C подсоединён к конденсатору C_2 (рис. 10). Ключ K перекидывают из правого положения в левое, а после перезарядки конденсаторов возвращают в исходное положение.

Рис. 10 Известно, что после ныполнения 44 таких циклов разность напряжений $(U_2-U_1)_{44}$ составила 1% от первоначальной $(U_2-U_1)_{44}$

- 1. Чему равна ёмкость конденсатора С?
- 2. Какое напряжение U_{∞} утсановится на конденсаторах после большого числа пиклов?
- 3. Какая тепловая энергия выделится на резисторе R после большого числа пиклов?

11 класс

Задача 1. Трифилярный маятник

Массивное кольцо подвешено на трёх тонких вертикальных нитях длиной L (рис. 11).

- Определите период малых крутильных колебаний кольца относительно оси OO'.
- 2. Насколько изменится период крутильных колебаний, если в центре кольца (точка О) при помощи лёгких спиц расположить тело малых размеров (материальную точку), масса которого равна массе кольца?

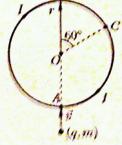
Указание: При $\alpha \ll 1$ можно использовать приближённое выражение

$$\cos \alpha \approx 1 - \alpha^2/2$$
.

Задача 2. Заряженная частица в соленоиде

На рисунке 12 изображено сечение длинной прямой катушки (соленоида), радиус витков которой r=10 см. Число витков катушки на 1 мегр длины $n=500\,\mathrm{m}^{-1}$. По виткам катушки протекает постоянный ток I=0,1 A (по часовой стрелке).

Через зазор между витками в точке A в катушку влетает заряженная частица, ускоренная размостью потенциалов $U=10^3\,\mathrm{B}$. Скорость частицы в точке A направлена вдоль радиуса соленоида. Частица движется внутри соленоида в плоскости, пермендикулярной его оси, и вылетает из соленоида в точке C, расположенной под углом $\alpha=60^\circ$ к перволючальному



nina hambarikhan.

1, энак зарида частины;

Определите:

2: радиуе кривичны трасктории частины внутри сомномина,

3. уденьный зарид частины (то есть отнешение модуля зарила частины к её массе).

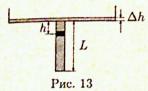
Магничний положиная ра - 4 п. 10 1 (крании СИ)

Задача 3. Устойчивость поршия

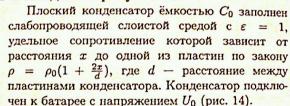
Закрытый сничу тенкостонный шалинар лайней 1. — 1 М и дотименто портименты. В портиме части см сомущей к пругны налимеров, сметостом беспишьго диньмера (рас. 13). В намисы напинарум на расстения h, — зай мы се корганы пристем распечение полимень. Нал першим меселичей сней регут населей h с 6h, гдв 6ch « h, наме першим — голяй нед давлением сней регут населей h с 6h, гдв 6ch « h, наме першим — голяй нед давлением

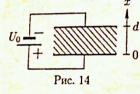
 $p_1 = p_0 + \rho_p g h_1$, где $p_0 = 760$ мм.рт.ст. — атмосферное давление, $\rho_p = 13.6 \, \text{г/cm}^3$ — плотность ртути. Из-за большой разницы диаметров цилиндров изменением Δh можно пренебречь при смещениях поршня по всей длине нижнего цилиндра.

нижнего цилиндра. Из условия задачи следует, что поршень находится в равновесии. Является ли это положение равновесия устойчивым? Существуют ли другие положения равновесия? Если есть, то при каких расстояниях h_i от поршия до верхнего края? Являются ли эти положения равновесия устойчивыми? Можно считать, что при малых изменениях объёма под поршнем температура гелия остаётся постоянной.



Задача 4. Конденсатор с утечкой





Найдите:

- 1. силу тока, протекающего через конденсатор;
- 2. заряды нижней (q_1) и верхней (q_2) пластин конденсатора;
- 3. заряд q внутри конденсатора (т. е. в среде между пластинами);
- 4. электрическую энергию W_3 , запасённую в конденсаторе.

Задача 5. Плоский световод

Вблизи левого торца хорошо отполированной прозрачной пластины, показатель преломления которой n, расположен точечный источник света S (рис. 15). Толщина пластины H=1 см, её длина L=100 см. Свет от источника падает на левый торец пластины под всевозможными углами падения $(0-90^\circ)$. В глаз наблюдателя попадают как прямые лучи от источника, так и лучи, многократно испытавшие полное отражение на боковых гранях пластины.

1. Какое максимальное число отражений может испытать луч от источника, выходящий через правый торец пластины? Решите задачу для двух значений коэффициента преломления: $n_1 = 1,73, n_2 = 1,3$.

2. Укажите, в каком из этих двух случаев свет частично выходит из пластины через боковые грани.

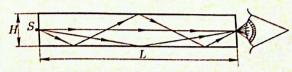
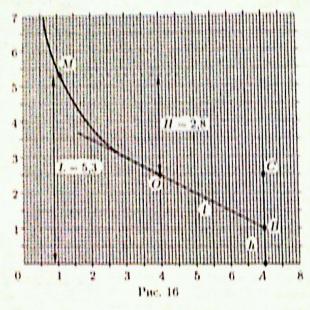


Рис. 15



Проведём касательную в нижней точке желоба O, а также горизонтальную линию через ту же точку. Из точки A проведём вертикальную линию, пересекажикую касательную в точке B и горизонтальную линию — в точке C (рис. 16).

Движение тела по вертикали после отрыва от желоба описывается уравне-

$$y = v_{oy}t + \frac{gt^2}{2},$$

еде v_{oy} — проекция скорости тела на вертикальную ось в момент отрыва от жельба, начало координат находится в точке O_i ось Y направлена вниз.

На рисунке отрезок CB равен расстоянию, которое тело прошло бы по вертивали за время падения t_0 , если бы не было ускорения свободного падения, а отрезок BA равен расстоянию, которое тело пролетело бы за то же время t_0 при свободном падении без начальной скорости. Кроме того, отрезок OB равен пути, которое тело, двигаясь с постоянной скоростью v_0 , прошло бы за время t_0 . Таким образом,

$$AB = h = \frac{gt_0^2}{2}; \quad OB = l = v_0t_0.$$

Исключив из этих соотношений время надения t_0 , получим:

$$v_0^9 \sim \frac{gt^9}{2h}.$$

Высоту H начальной точки пад точкой O найдём из закона сохранения эпергии:

$$\frac{mv_0^2}{2} = mgH.$$

OTCIONA!

$$H = \frac{l^2}{4h},$$

По рисунку находим:

$$h = 1$$
, $l^2 = (CH)^2 + (OC)^2 = (1.5)^2 + (3)^2 = 11.25$;

$$H = \frac{11,25}{4} \approx 2,8,$$

Расстояние от точки M до пода равно L=5,3 условных единиц.

Критерии оценивания

Задача 2. Шайба и горка

1. Пусть m и M — массы шайбы и горки соответственно, v_0 — начальная скорость шайбы, v_1 и v_2 — проекции скоростей шайбы и горки на направление \vec{v}_0 после соскальзывания шайбы. Запишем законы сохранения импулься и энергии:

$$mv_0 = mv_1 + Mv_2, \tag{1}$$

$$\frac{mv_0^2}{2} = \frac{mv_1^2}{2} + \frac{Mv_2^2}{2}. (2)$$

Из этих уравнений следует:

$$v_1 = \frac{m - M}{m + M} v_0, \quad v_2 = \frac{2m}{m + M} v_0. \tag{3}$$

XLV Всероссийская анимпиада школьников по физике

Шайба и горка после соскальзывания шайбы движутся с одинаковыми по Шайба и горка после составляющих направлениях ($v_2 = -v_1$), следовательмодилю схоростями в противоположных направлениях ($v_2 = -v_1$), следовательмодилю схоростями в противоположных направлениях ($v_2 = -v_1$), следовательмодилю схоростями в противоположных направлениях ($v_2 = -v_1$), следовательмодилю схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростями в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных направлениях ($v_2 = -v_1$), следовательного схоростами в противоположных ($v_1 = -v_1$), следовательного схоростами в противоположных ($v_1 = -v_1$), сл модулю скоростями в противоване: (m-M)=-2m, откуда следует: M=3m. но, должно выполняться условие: (m-M)=-2m, откуда следует: M=3m.

2. Рассмотрим теперь момент времени, когда шайба достигла максимальной высоты Н. В этот момент скорости шайбы и горки одинаковы и равны у. Запишем для этого момента законы сохранения импульса и энергии:

$$mv_0 = (m+M)v$$
.

$$\frac{mv_0^2}{2} = mgH + \frac{m+M}{2}v^2. (4)$$

Решья совметско эти уразления, получим:

$$\frac{mr_0^2}{2}\left(1 - \frac{m}{m+M}\right) = mgH,\tag{5}$$

OTATIO

$$\frac{mgH}{mx_0^2/2} = \frac{M}{m+M} = \frac{3}{4}.$$
 (6)

Критерии оценивания

Записан закие оправения импульса	
LDS MOMENTA DOCHE COCKATAGNERHUS IIIAŽÓM.	1
Записан закин сохранения энергии	,
LIE MONESTE DOCTE COCKELISTISSEBREE ELEMÓSI	
Найлены спорости горки и шайбы после соскальзывания шайбы с горки .	
Затысько соотношение межлу скоростими горки и шайбы	
после соскальзывания шайбы с горки	
Надрено соотношение масс шайбы и горки	1
Sametae bakin companence	
EDELICIS TIN NODELLE NATURALISADO DOLIGINE MENUO.	l
Заплова закое сохражения эдергии	
ти жимента максимального польёма шайбы	l
Найдено отношение максимальной потенциальной энергии шайбы	
в её вачальной кинетической энергии	2

Задача 3. Циклический теплообмен

1. Рассмотрим процессы теплообмена в первом цикле:

$$c_1t_1-ct_2=(c_1+c)t_1', \quad \text{откуда} \quad t_1'=\frac{c_1t_1+ct_2}{c_1+c},$$

$$c_2t_2+ct_1'=(c_2+c)t_2',$$
 откуда $t_2'=\frac{c_2t_2+ct_1'}{c_2+c}.$

Здесь t_1' и t_2' — температуры воды в сосудах по окончании первого цикла.

$$\Delta t' = t'_2 - t'_1 = \frac{(c_2 t_2 + ct'_1) - (c_2 + c)t'_1}{c_2 + c} = \frac{c_2 (t_2 - t'_1)}{c_2 + c} =$$

$$= \frac{c_2 [(c_1 + c)t_2 - (c_1 t_1 + ct_2)]}{(c_1 + c)(c_2 + c)} = \frac{c_1 c_2 (t_2 - t_1)}{(c_1 + c)(c_2 + c)}.$$

$$\Delta t' = A(t_2 - t_1), \quad A = \frac{c_1 c_2}{(c_1 + c)(c_2 + c)} < 1.$$

Таким образом, за каждый цикл разность температур в сосудах уменьшается B 1/A pas. Hpu $c_1:c_2:c=4:5:1$

$$A = \frac{2}{3}, \quad \frac{1}{A} = \frac{3}{2}, \quad \left(\frac{1}{A}\right)^n \ge N.$$

Подбором (на калькуляторе) легко получить: $n_{min} = 8$.

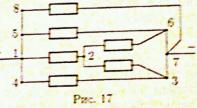
2. После большого числа шиклов температуры бруска и волы в сосудах будут одинаковыми. Установившуюся температуру можно найти из условия теплового баланса:

$$c_1t_1+c_2t_2+ct_2=(c_1+c_2+c)t_0, \quad \text{otenua} \quad t_0=\frac{2t_1+3t_2}{5}.$$

Критерии оценивания Записано выражение для t_1' Найдено выражение, связывающее разность температур на п - ом шаге Записано уравнение теплового баланса для установившейся температуры .. 2

Задача 4. Проволочный куб

1. Обратим внимание на то. что резистор R45 замкнут накоротко. Следовательно, по нему ток не течет. и его можно удалить из стедны без нарушения распределения токов и напряжений во всех других рёбрах. При этом скема сильно упрошается и её можно изобразить в виде комбина-



пии параллельно и последовательно соединённых резисторов (рис. 17). Из

ХІУ Водохувістья альненній шамьники по физик

Сопротивление этой ценочки K' равно: валочены между уклами 1 и 7 параллельно. Также параллельно этим резисторам включена пеночка, екстонивая из резисторов $R_{12},\ R_{26}$ и R_{23} приводенной эквивалентной схемы вилию, что резисторы Rst. Rs6 и Rq2

$$R' = R + \frac{R \cdot R}{R + R} = \frac{3}{2}R.$$

Таким ображм, полное сопротивление R_{AB} определим из соотношения:

$$\frac{1}{R_{AB}} = \frac{3}{R} + \frac{2}{3R} = \frac{11}{3R}.$$

откуда следует, что

$$R_{AB} = \frac{3}{11} R; \quad I_{AB} = \frac{U}{R_{AB}} = \frac{11 U}{3 R}.$$

2. Из эквивалентной схемы видно, что сила тока будет максимальна в ребре

$$I_{\text{max}} = I_{15} = I_{587} + I_{56} = \frac{U}{R} + \frac{U}{R} = 2\frac{U}{R}.$$

в которых сила тока максимальна. Таких резисторов три: R_{87} , R_{56} и R_{43} . 3. Максимальная тепловая мощность будет выделяться на тех резисторах,

B каждом из них сила тока составляет $I=\frac{U}{R}$, а мощность $P_{max}=\frac{U^2}{R}$.

резисторах. С помощью новой эквивалентной схемы можно получить: 4. При переносе контакта из узла 7 в узсл 2 изменяются токи во всех

$$R_{AC} = \frac{5}{11} R; \quad I_{AC} = \frac{11 U}{5 R}.$$

Критерии оценивания

Определено, в каком из ребёр куба сила тока максимальна Найдева сила тока I_{AB} и сопротивление R_{AB} между клеммами A и $B\ldots 3$

Указано, в каких резисторах выделяется максимальная тепловая мошность

Задача 5. Составной цилиндр

скла, необиодимая для удержания заслонии в прижатом состоянии, равна: валила V . эт роз воли, высота столба волы оказалась равной h . Минимальная 1. (Графический способ) Допустим, что после того, как в составной пилиндр

$$F = F_0 + (\rho g S_1) \cdot h$$

5

где ho — плотность воды, g — ускорение свободного падения

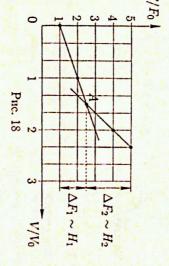
первой (нижней) трубы справедливо соотношение: Зависимость h(V) и F(V) для каждого из отрезков труб линейна. Для

$$\left(\frac{\Delta F}{\Delta V}\right)_1 = \rho g.$$

Для второй (верхней) трубы справедливо соотношение:

$$\left(\frac{\Delta F}{\Delta V}\right)_2 = \frac{\rho g S_1 \Delta h}{S_2 \Delta h} = \rho g \frac{S_1}{S_2}.$$

Построим график зависимости F(V) (рис. 18):



Из него находим, что отношение угловых коэффициентов

$$\left(\frac{\Delta F}{\Delta V}\right)_2: \left(\frac{\Delta F}{\Delta V}\right)_1 = \frac{S_1}{S_2} = 3,$$

а отношение

$$\frac{\Delta F_1}{\Delta F_2} = \frac{\rho g H_1}{\rho g H_2} = \frac{H_1}{H_2} = \frac{1.5}{2.5} = \frac{3}{5}.$$

порции воды. По условию задачи 2. (Аналитический способ) Рассмотрим ситуацию после наливания первой

$$S_1h_1=V_0.$$

3

Воспользуемся законом Паскаля:

$$0 + \rho g h_1 S_1 = 2F_0$$

 $F_0 + \rho g h_1 S_1 = 2F_0$

$$F_0 = \rho g h_1 S_1. \tag{S}$$

Отсюда:

Теперь рассмотрим ситуацию после наливания второй порции воды. Судя по изменению давления на заслонку, можно предположить, что вода полностью заполнила нижнюю трубу и частично - верхнюю;

$$H_1S_1 + h_2S_2 = 2V_0. (9)$$

Согласно закону Паскаля: $F_0 + \rho g(H_1 + h_2)S_1 = 4F_0$. Отсюда:

$$3F_0 = \rho g(H_1 + h_2)S_1. \tag{10}$$

Наконец, рассмотрим ситуацию после наливания третьей порции волы:

$$2V_0 + V_0/3 = H_1S_1 + H_2S_2. (11)$$

Согласно закону Паскаля: $F_0 + \rho g(H_1 + H_2)S_1 = 5F_0$. Отсюда:

$$4F_0 = \rho g(H_1 + H_2)S_1. \tag{12}$$

Решая полученную систему уравнений, найдём:

$$S_1: S_2 = 3:1, \quad H_1: H_2 = 3:5.$$

Критерии оценивания

Графическое решение:	
Найдена зависимость $\overline{F(h)}$	2
Построен график с проведёнными прямыми	4
Аналитическое решение:	
Записаны уравнения (1) – (6) (по балу за каждое уравнение)	6
Ответы:	
Найдено отношение S_1 к S_2	1
Найдено отношение H_1 к H_2	3

10 класс

Задача 1. Шарик в сосуде с водой

Пусть плотности воды, деревянного и металлического шариков равны ρ , ρ_1 и ρ_2 соответственно, объёмы шариков — V_1 и V_2 , расстояние от оси вращения по деревянного шарика R, силы натяжения верхней и нижней питей T_1 и T_2 . угловая скорость вращения ω .

1. Рассмотрим мысленно вместо деревянного шарика шарик из воды. На эти шарики действует одинаковая сила Архимеда (рис. 19).

Воляной шарик

Деревянный шарик

 $\rho_1 V_1 \vec{g}$

Рис. 19

Ускорение шариков $a = \omega^2 R$. По второму закону Ньютона в проекциях на горизонтальное и вертикальное направления:

$$F_A \sin \gamma = \rho V_1 \omega^2 R$$
, $F_A \sin \gamma - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R$,
 $F_A \cos \gamma = \rho V_1 g$, $F_A \cos \gamma - T_1 \cos \alpha = \rho_1 V_1 g$.

Отсюда:

$$\operatorname{tg} \gamma = \frac{\omega^2 R}{g}, \qquad \operatorname{tg} \alpha = \frac{\omega^2 R}{g}.$$

Итак, $\gamma = \alpha$, то есть получаем ответ на первый вопрос: сила Архимеда направлена под углом а к вертикали, то есть, вдоль нити.

2. Найдём горизонтальные и вертикальные составляющие сил Архимеда, действующих на шарики (рис. 20):

$$F_{A_1x} = \rho V_1 \omega^2 R, \quad F_{A_1y} = \rho V_1 g,$$

 $F_{A_2x} = \rho V_2 \omega^2 \cdot 3R, \quad F_{A_2y} = \rho V_2 g.$

По второму закону Ньютона:

$$\begin{cases} F_{A_1x} - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R, \\ F_{A_1y} - \rho_1 V_1 g - T_1 \cos \alpha = 0, \\ F_{A_2x} + T_1 \sin \alpha + T_2 \cos \alpha = \rho_2 V_2 \omega^2 \cdot 3R, \\ F_{A_2y} - \rho_2 V_2 g + T_1 \cos \alpha - T_2 \sin \alpha = 0. \end{cases}$$

