Муниципальный этап всероссийской олимпиады школьников

по химии

2017-2018 учебный год

11 класс

Максимальный балл – 87 баллов

Задание 11.1. (максимум 10 баллов)

Объясните термины «твердые растворы» и «жидкие кристаллы». Какими свойствами они обладают?

Решение:

Твердый раствор — система переменного состава, где атомы различных примесных элементов распределены в общей кристаллической решетке основного кристаллического вещества. Твердые растворы способны образовывать кристаллические вещества. Атомы примеси ΜΟΓΥΤ располагаться кристаллической решетке по-разному: упорядоченно и хаотически. Принято считать, что твердые растворы образуются лучше в том случае, если различие радиусов атомов основного и примесного вещества не превышает 15% – 5 баллов.

Жидкие кристаллы образуют вещества, имеющие молекулы удлиненной формы. По степени упорядоченности жидкие кристаллы занимают промежуточное положение между жидкостями и твердыми кристаллами. Жидкие кристаллы характеризуются свойствами жидкости — текучестью и твердого кристалла — анизотропией, т.е. зависимостью физических свойств от направления. Другими словами, структура жидкого кристалла легко изменяется при некоторых внешних воздействиях (магнитное или электрическое поле) с изменением свойств — 5 баллов.

Допускаются иные варианты ответов свойств.

Задание 11.2. (максимум 20 баллов)

Допишите недостающие вещества в уравнения химических реакций, расставьте коэффициенты:

- 1. $NH_3 + KMnO_4 + KOH = N_2 + ... + H_2O$
- 2. $Na_2SO_3 + KMnO_4 + H_2O = MnO_2 + Na_2SO_4 + ...$
- 3. $KMnO_4 + HCl = MnCl_2 + Cl_2 + ... + ...$
- 4. $CrCl_3 + NaOH + H_2O_2 = ... + NaCl + H_2O$
- 5. $K_2CrO_4 + KNO_2 + KOH + ... = KNO_3 + K_3[Cr(OH)_6]$
- 6. $FeSO_4 + K_2Cr_2O_7 + H_2SO_4 = Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + ... + ...$
- 7. $Fe(OH)_2 + Br_2 + ... = K_2FeO_4 + KBr + H_2O$
- 8. $H_2S + Cl_2 + H_2O = H_2SO_4 + ...$
- 9. $KI + H_2SO_4 + H_2O_2 = I_2 + H_2O + ...$
- 10. $H_2O_2 + Na_2SO_3 = Na_2SO_4 + ...$

Решение:

- 1. $2NH_3 + 6KMnO_4 + 6KOH = N_2 + 6K_2MnO_4 + 6H_2O$
- 2. $3Na_2SO_3 + 2KMnO_4 + H_2O = 2MnO_2 + 3Na_2SO_4 + 2KOH$
- 3. $2KMnO_4 + 16HCl = 2MnCl_2 + 5Cl_2 + 2KCl + 8H_2O$
- 4. $2CrCl_3 + 10NaOH + 3H_2O_2 = 2Na_2CrO_4 + 6NaCl + 8H_2O$
- 5. $2K_2CrO_4 + 3KNO_2 + 2KOH + 5H_2O = 3KNO_3 + 2K_3[Cr(OH)_6]$
- 6. **6**FeSO₄ + $K_2Cr_2O_7$ +**7** H_2SO_4 =**3**Fe₂(SO₄)₃+ $Cr_2(SO_4)_3$ + K_2SO_4 +**7** H_2O_4
- 7. $2\text{Fe}(OH)_3 + 3\text{Br}_2 + 10\text{KOH} = 2\text{K}_2\text{Fe}O_4 + 6\text{KBr} + 8\text{H}_2O$
- 8. $H_2S + 4Cl_2 + 4H_2O = H_2SO_4 + 8HCl$
- 9. $2KI + H_2SO_4 + H_2O_2 = I_2 + 2H_2O + K_2SO_4$
- 10. $H_2O_2 + Na_2SO_3 = Na_2SO_4 + H_2O$

Задание 11.3. (максимум 12 баллов)

Свежеприготовленная смесь пропанола и пропионовой кислоты может прореагировать с 100 мл 4,04% -ного раствора гидрокарбоната натрия (плотность раствора 1,04 г/мл). Выделившийся при этом газ занимает в 12 раз меньший объём, чем тот же газ, образующийся при полном сгорании такого же количества исходной смеси (объёмы газов измерены при одинаковых условиях).

Рассчитайте массовые доли (в %) компонентов исходной смеси.

Изменится ли объём газа, выделяющегося при опытах, если для проведения эксперимента взять смесь, приготовленную несколько дней назад?

Решение:

1	Написаны уравнения реакций:			
	$C_3H_7OH + NaHCO_3 \neq$			
	$C_2H_5COOH + NaHCO_3 \rightarrow C_2H_5COONa + H_2O + CO_2\uparrow$ (1)			
	$M = 74 \ \Gamma/\text{моль}$ $M = 84 \ \Gamma/\text{моль}$	3 балла		
	$2C_2H_5COOH + 7O_2 \rightarrow 6CO_2\uparrow + 6H_2O \tag{2}$			
	$2C_3H_7OH + 9O_2 \rightarrow 6CO_2\uparrow + 8H_2O \tag{3}$			
	$M = 60 \Gamma / MOЛЬ$			
2	Рассчитано количества вещества NaHCO ₃ :	1 балл		
	$n(NaHCO_3) = 100 \cdot 1,04 \cdot 0,404/84 = 0,5$ моль			
3	Рассчитана масса пропионовой кислоты:	1 балл		
	$n(C_2H_5COOH) = n(NaHCO_3) = 0.05$ моль			
	$m(C_2H_5COOH) = M \cdot n = 74 \cdot 0.05 = 3.7 \Gamma$			
4	Найдено количество вещества CO ₂ по уравнению (1):	1 балл		
	$n(CO_2) = n(C_2H_5COOH) = 0.05$ моль			
5	Найдено количество вещества СО2, образовавшееся при сгорании	1 балл		
	исходной смеси:			
	$n(CO_{2, \text{образ. при сгорании исходной смеси}}) = 0.05 \cdot 12 = 0.6 \text{моль}$			
6	Найдено количество вещества CO ₂ по уравнению (2):	1 балл		
	$n(CO_2) = 3n(C_2H_5COOH) = 0,15$ моль			
7	Рассчитано количество вещества и масса пропанола:	1 балл		
	$n(C_3H_7OH) = 1/3 \ n(CO_2) = 0.45/3 = 0.15$ моль			
	$m(C_3H_7OH) = 0.15 \cdot 60 = 9 \Gamma$			
8	Рассчитана масса смеси и массовые доли её компонентов:	2 балла		
	$m(ucx. cmecu) = m(C_2H_5COOH) + m(C_3H_7OH) = 3,7 + 9 = 12,7 г$			
	$\dot{\omega}$ (C ₃ H ₇ OH) = 9/12,7 = 0,7087, или70,87%			
	$\dot{\omega}(C_2H_5COOH) = 3,7/12,7 = 0,2913,$ или $70,87\%$			
9	При долгом хранении смеси устанавливается химическое	1 балл		
	равновесие:			
	$C_2H_5COOH + C_3H_7OH \leftrightarrow C_2H_5COOC_3H_7 + H_2O$			
	Это приводит к уменьшению количества кислоты. Отсюда, при			
	взаимодействии долгостоящей смеси с гидрокарбонатом натрия			
	СО ₂ будет выделяться меньше, чем при реакции со			
	свежеприготовленной смесью.			
	При сгорании исходной смеси количество вещества СО2 не			
	зависит от того, есть в смеси эфир или нет.			
ИТОГО		12 баллов		

Внимание! Задачи могут быть решены разными способами. Не следует снижать оценку, если задачи решены оригинальным способом.

Задание 11.4. (максимум 20 баллов)

Аккуратное нагревание смеси веществ **A** (белый порошок массой 16,7 г) и **B** (серые кристаллы массой 25,4 г) дает смесь трех продуктов в равном мольном соотношении: **C** (желтый порошок массой 23,5 г), **D** (бесцветная жидкость объемом 14,2 г) и **E** (бесцветный газ объемом 2,24 л при н.у.). Вещество **A** растворимо в воде; при добавлении к полученному раствору водного аммиака образуется осадок, который при дальнейшем добавлении избытка водного аммиака растворяется. Вещество **B** нерастворимо в воде; при реакции спиртового раствора **B** с водным аммиаком в осадок выпадают взрывчатые кристаллы. Вещество **C** нерастворимо в воде, однако заметно растворяется в водном аммиаке. Жидкость **D** не смешивается с водой, но взаимодействует с водным аммиаком. Газ **E** слабо растворим в воде, но легко поглощается водным аммиаком.

- 1. Напишите формулы зашифрованных веществ, упомянутые в задаче.
- 2. Напишите уравнения реакций всех процессов (7 уравнений).

Решение:

1. Сначала по закону сохранения массы рассчитаем массу газа Е:

$$16.7 + 25.4 - 23.5 - 14.2 = 4.4 \, \Gamma$$

следовательно, молярная масса Е:

 $4,4 \Gamma / (2,24 \pi / 22,4 \pi/моль) = 44 \Gamma/моль.$

Простейший газ, обладающий такой молярной массой, это СО2.

2. В соответствии с условием задачи ${\rm CO_2}-{\bf E}$ слабо растворим в воде, но легко поглощается водным аммиаком:

$$CO_2 + 2NH_3 + H_2O = (NH_4)_2CO_3.$$

3. Далее, вычислим молярную массу серых кристаллов В:

 $n \times 25,4 \Gamma/(2,24 \pi / 22,4 \pi/моль) = n \times 254 \Gamma/моль$

(где n – стехиометрическое соотношение между **B** и **E** в реакции).

В простейшем случае n=1 массе **B** соответствует I_2 , который нерастворим в воде, а при реакции в спиртовом растворе с водным аммиаком дает осадок взрывчатых кристаллов NI_3 (точнее NI_3 · NH_3):

$$3I_2 + 4NH_3 = NI_3 + 3NH_4I \tag{2}$$

4. Аналогичным образом рассчитаем молярные массы веществ **A**, **C** и **D**:

$$M(A) = n \times 16.7 \ \Gamma/(2.24 \ \pi / 22.4 \ \pi/моль) = n \times 167 \ \Gamma/моль$$

 $M(C) = 23.5 \Gamma/(2.24 \pi / 22.4 \pi/моль) = 235 \Gamma/моль$

$$M(\mathbf{D}) = 14.2 \ \Gamma/(2.24 \ \pi / 22.4 \ \pi/моль) = 142 \ \Gamma/моль$$

Поскольку ${\bf E}$ не содержит атомы йода, то вещество ${\bf C}$ или ${\bf D}$ должны их содержать. Попробуем вычесть молярную массу йода из молярной массы ${\bf C}$: 235 – 127 = 108 г/моль, что соответствует массе атома серебра. Таким образом, разумно предположить, что ${\bf C}$ – это ${\bf AgI}$ – желтый порошок нерастворимый в воде, однако заметно растворимый в водном аммиаке:

$$AgI + NH_3 = [Ag(NH_3)_2]I$$
 (3)

- 5. Теперь попробуем вычесть молярную массу йода из молярной массы **D**:
- 142-127=15 г/моль, что соответствует массе группы CH_3 . Таким образом, разумно предположить, что \mathbf{D} это CH_3I бесцветная жидкость, которая не смешивается с водой, но взаимодействует с водным аммиаком:

$$CH_3I + NH_3 = [CH_3NH_3]I \tag{4}$$

6. По закону сохранения, оставшееся неразгаданным вещество $\bf A$ имеет состав $C_2H_3O_2Ag$, т.е. CH_3COOAg — растворимое в воде вещество. При добавлении к его раствору водного аммиака образуется осадок, который при дальнейшем добавлении избытка водного аммиака растворяется:

$$2CH_3COOAg + 2NH_3 + H_2O = Ag_2O \downarrow + 2CH_3COONH_4$$
 (5)

$$Ag_2O + 4NH_3 + H_2O = 2[Ag(NH_3)_2]OH$$
 (6)

Реакция, описанная в задаче, носит имя Бородина-Хунсдикера:

$$CH_3COOAg + I_2 = AgI + CH_3I + CO_2$$
 (7)

Баллы	3a	правильное	определение	веществ:
$\mathbf{A} = \mathbf{CH}_3\mathbf{COOAg}$; (2 балла)			
$\mathbf{B} = \mathbf{I}_2 (1 \text{ балл})$				
C = AgI (1 балл)			
$D = CH_3I$ (1 бал	л)			
$E = CO_2$ (1 балл)			
•	кций – по 2 балл	а за кажлое.		
Всего – 20 балл		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Задание 11.5. (м	иаксимум 25 балл	іов)		
	Э	КСПЕРИМЕНТ <i>А</i>	АРАДАЕ КАНАП	
муравьиной и оборудование, уравнения реакт	уксусной кислопределите веще дий, на основани возвание: штатив	пот. Используя ества в пробирка и которых произ aOH, 5% -ный р-	створы глицерина, гл., находящиеся на х. Опишите ход опреведено определение в р CuSO ₄ , 10%-ный р-ри, водяная баня, г	столе реагенты и еделения. Напишите еществ. • NaHCO ₃
Запиши	ท <i>e</i> ทุกสหมาส ก็ <i>ค</i> รถม	пасной паботы в	з химической лаборап	ทดทนน
(не	-	сисной расоты с более	5	правил)
(•	
« <u></u> »	2017 год	/роспись участы		
		1		
3anuuume xod	определения веи	цеств в пробирк	ax:	
3anuuume ypae	знения реакций			
Итог эксперил	лента:			7
	-	№ пробирки	Химическая	
			формула вещества	
		1		
		2		
		3		7

Балл и роспись учителя в кабинете (от 0 до 3 баллов)

Баллы за верную последовательность действий участника при работе, за технику безопасности при выполнении эксперимента, за чистоту на рабочем месте после проведения эксперимента.

	баллов	
Учитель		
	подпись учителя	ФИО

Критерии оценивания выполнения эксперимента

№ п/п	1 1				Баллы		
1	Балл за верную последовательность действий участника при работе (ставит учитель в кабинете)				1 балл		
2	Балл за технику безопасности при выполнении эксперимента, за чистоту на рабочем месте после проведения эксперимента (ставит учитель в кабинете)				1 балл		
3	Запись цел	и эксперим	ента, формул	веществ, выд	цанных органи	заторами.	1 балл
4		глицерин	глюкоза	формалин	муравьиная	уксусная	5 баллов
	NaOH + CuSO ₄ (обычн. условия)	ярко- синий раствор	ярко- синий раствор	_	кислота растворение осадка	кислота растворение осадка	
	NaOH + CuSO ₄	_	красно- оранжевый осадок	красно- оранжевый осадок	красно- оранжевый осадок	растворение	
	NaHCO ₃	_	_	_	CO ₂ ↑	CO ₂ ↑	
		J	№ пробирки	Химичео формула ве			5 баллов
			1	CH ₃ COOH			
			2	HCOOH			
			3 4	НСНО глицерин			
			5	глюкоза			
	**			131101030			
5	Уравнения реакций:					1 60	
	CH_2OH — $CHOH$ — CH_2OH + $Cu(OH)_2$ — комплексное соединение ярко-синего цвета					1 балл	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 балла		

	1.5
$2C_6H_{10}O_4(OH)_2 + 2Cu(OH)_2 \rightarrow$ комплексное соединение ярко-синего цвета	1 балл
$CH_2OH-(CHOH)_4-CHO+2Cu(OH)_2 \xrightarrow{t^0} \rightarrow$	
$CH_2OH-(CHOH)_4-COOH+Cu_2O\downarrow+2H_2O$	1 балл
$HCHO + Cu(OH)_2 \downarrow \xrightarrow{t^0} \rightarrow$	1 балл
$2\text{HCOOH} + \text{Cu(OH)}_2\downarrow \rightarrow (\text{HCOO})_2\text{Cu} + \text{H}_2\text{O}$	1 балл
$HCOOH + 2Cu(OH)_2 \xrightarrow{t^0} CO_2 \uparrow + Cu_2O \downarrow + 3H_2O$	1 балл
$HCOOH + NaHCO_3 \rightarrow HCOONa + H_2O + CO_2 \uparrow$	1 балл
$Cu(OH)_2\downarrow + 2CH_3COOH \rightarrow (CH_3COO)_2Cu + H_2O$	1 балл
$CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + H_2O + CO_2 \uparrow$	1 балл
За оригинальность	1 балл
Ито	25
	баллов